目录
3.1基本数据类型
3.2集合数据类型
3.3类型转化
3.4集合数据类型创建和查询
3.4.1 map类型创建和查询
3.4.2 array类型创建和查询
3.4.3 struct类型创建和查询
3.4.4 explode在map和array使用
3.4.5 Lateral View在map和array使用
Hive数据类型 | Java数据类型 | 长度 | 例子 |
---|---|---|---|
TINYINT | byte | 1byte有符号整数 | 20 |
SMALINT | short | 2byte有符号整数 | 20 |
INT | int | 4byte有符号整数 | 20 |
BIGINT | long | 8byte有符号整数 | 20 |
BOOLEAN | boolean | 布尔类型,true或者false | TRUE FALSE |
FLOAT | float | 单精度浮点数 | 3.14159 |
DOUBLE | double | 双精度浮点数 | 3.14159 |
STRING | string | 字符系列。可以指定字符集。可以使用单引号或者双引号。 | ‘now is the time’ “for all good men” |
TIMESTAMP | 时间类型 | ||
BINARY | 字节数组 |
对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储2GB的字符数。
3.2集合数据类型
数据类型 | 描述 | 语法示例 |
---|---|---|
STRUCT(结构体)对象 | 和c语言中的struct类似,都可以通过“点”符号访问元素内容。例如,如果某个列的数据类型是STRUCT{first STRING, last STRING},那么第1个元素可以通过字段.first来引用。 | struct() |
MAP 映射 | MAP是一组键-值对元组集合,使用数组表示法可以访问数据。例如,如果某个列的数据类型是MAP,其中键->值对是’first’->’John’和’last’->’Doe’,那么可以通过字段名[‘last’]获取最后一个元素 | map() |
ARRAY 数组 | 数组是一组具有相同类型和名称的变量的集合。这些变量称为数组的元素,每个数组元素都有一个编号,编号从零开始。例如,数组值为[‘John’, ‘Doe’],那么第2个元素可以通过数组名[1]进行引用。 | Array() |
Hive有三种复杂数据类型ARRAY、MAP 和 STRUCT。ARRAY和MAP与Java中的Array和Map类似,而STRUCT与C语言中的Struct类似,它封装了一个命名字段集合,复杂数据类型允许任意层次的嵌套。
案例实操
(1)假设某表有如下一行,我们用JSON格式来表示其数据结构。在Hive下访问的格式为
{
"name": "songsong",
"friends": ["bingbing" , "lili"] , //列表Array,
"children": { //键值Map,
"xiao song": 18 ,
"xiaoxiao song": 14
}
"address": { //结构Struct,
"street": "hui long guan" ,
"city": "beijing"
}
}
(2)基于上述数据结构,我们在Hive里创建对应的表,并导入数据。
创建本地测试文件test.txt
songsong,bingbing_lili,xiao song:18_xiaoxiao song:19,hui long guan_beijing
yangyang,caicai_susu,xiao yang:18_xiaoxiao yang:19,chao yang_beijing
注意:MAP,STRUCT和ARRAY里的元素间关系都可以用同一个字符表示,这里用“_”。
3)Hive上创建测试表test
create table test(
name string,
friends array<string>,
children map<string, int>,
address struct<street:string, city:string>
)
row format delimited fields terminated by ','
collection items terminated by '_'
map keys terminated by ':'
lines terminated by '\n';
字段解释:
row format delimited fields terminated by ',' -- 列分隔符
collection items terminated by '_' --MAP STRUCT 和 ARRAY 的分隔符(数据分割符号)
map keys terminated by ':' -- MAP中的key与value的分隔符
lines terminated by '\n'; -- 行分隔符
4)导入文本数据到测试表
hive (default)> load data local inpath ‘/opt/module/datas/test.txt’into table test
5)访问三种集合列里的数据,以下分别是ARRAY,MAP,STRUCT的访问方式
hive中map数据类型的数据的常用函数
hive (default)> select friends[1],children['xiao song'],address.city from test
where name="songsong";
OK
_c0 _c1 city
lili 18 beijing
select name , fs[1] , map_keys(ch) , address.street , address.city from demo1 ;
+-----------+-------+--------------------------------+----------------+----------+--+
| name | _c1 | _c2 | street | city |
+-----------+-------+--------------------------------+----------------+----------+--+
| songsong | lili | ["xiao song","xiaoxiao song"] | hui long guan | beijing |
| yangyang | susu | ["xiao yang","xiaoxiao yang"] | chao yang | beijing |
+-----------+-------+--------------------------------+----------------+----------+--+
3.3类型转化
Hive的原子数据类型是可以进行隐式转换的,类似于Java的类型转换,例如某表达式使用INT类型,TINYINT会自动转换为INT类型,但是Hive不会进行反向转化,例如,某表达式使用TINYINT类型,INT不会自动转换为TINYINT类型,它会返回错误,除非使用CAST操作。
- 隐式类型转换规则如下:
(1)任何整数类型都可以隐式地转换为一个范围更广的类型,如TINYINT可以转换成INT,INT可以转换成BIGINT。
(2)所有整数类型、FLOAT和STRING类型都可以隐式地转换成DOUBLE。
(3)TINYINT、SMALLINT、INT都可以转换为FLOAT。
(4)BOOLEAN类型不可以转换为任何其它的类型。 - 可以使用CAST操作显示进行数据类型转换
例如CAST(‘1’ AS INT)将把字符串’1’ 转换成整数1;如果强制类型转换失败,如执行CAST(‘X’ AS INT),表达式返回空值 NULL。
3.4集合数据类型创建和查询
3.4.1 map类型创建和查询
操作步骤
## 建表语句
create table hive_map(id int , name string , data_map map<string,string>)
row format delimited fields terminated by ' '
collection items terminated by ','
map keys terminated by ':';
## 原始数据
1 zs father:zsfa,moter:zsmo,brother:zsbr
2 ls father:lsfa,moter:lsmo,brother:lsbr-lsbr2
## 加载数据
load data local inpath '/root/data/hive-map.txt' overwrite into table hive_map;
## 数据查询
-- map_keys
select id,name,map_keys(data_map) from hive_map;
-- map_values:返回key和value的数组
select id,name,map_values(data_map) from hive_map;
-- 字段[key]
select id,name,data_map['brother'] from hive_map;
结果展示
hive> show tables;
OK
Time taken: 0.036 seconds
hive> create table hive_map(id int , name string , data_map map<string,string>)
> row format delimited fields terminated by ' '
> collection items terminated by ','
> map keys terminated by ':';
OK
Time taken: 0.059 seconds
hive> load data local inpath '/root/data/hive-map.txt' overwrite into table hive_map;
Loading data to table default.hive_map
OK
Time taken: 0.625 seconds
hive> select id,name,map_keys(data_map) from hive_map;
OK
1 zs ["father","moter","brother"]
2 ls ["father","moter","brother"]
Time taken: 0.159 seconds, Fetched: 2 row(s)
hive> select id,name,map_values(data_map) from hive_map;
OK
1 zs ["zsfa","zsmo","zsbr"]
2 ls ["lsfa","lsmo","lsbr-lsbr2"]
Time taken: 0.163 seconds, Fetched: 2 row(s)
hive> select id,name,data_map['brother'] from hive_map;
OK
1 zs zsbr
2 ls lsbr-lsbr2
Time taken: 0.18 seconds, Fetched: 2 row(s)
hive>
3.4.2 array类型创建和查询
## 建表语句
create table hive_array(name string , data_array array<string>)
row format delimited fields terminated by ' '
collection items terminated by ',';
## 原始数据
1 xiaohui,taoge,xingge,lianhang,guanyu
2 najie,xiaoqiao
3 余辉,涛哥,星哥,念行,冠宇
4 娜姐,小乔
## 加载数据
load data local inpath '/root/data/hive-array.txt' overwrite into table hive_array;
## 数据查询
select name , data_array from hive_array;
-- size 数组长度
select name , data_array ,size(data_array) from hive_array;
-- 字段[角标]
select name , data_array[0] ,size(data_array) from hive_array;
-- array_contains 函数:判断数组是否包含指定元素
select name , array_contains(data_array,"xiaohui") ,size(data_array) from hive_array;
结果展示
hive> create table hive_array(name string , data_array array<string>)
> row format delimited fields terminated by ' '
> collection items terminated by ',';
OK
Time taken: 0.052 seconds
hive> load data local inpath '/root/data/hive-array.txt' overwrite into table hive_array;
Loading data to table default.hive_array
OK
Time taken: 0.581 seconds
hive> select name , data_array from hive_array;
OK
1 ["xiaohui","taoge","xingge","lianhang","guanyu"]
2 ["najie","xiaoqiao"]
3 ["余辉","涛哥","星哥","念行","冠宇"]
4 ["娜姐","小乔"]
Time taken: 0.175 seconds, Fetched: 4 row(s)
hive> select name , data_array ,size(data_array) from hive_array;
OK
1 ["xiaohui","taoge","xingge","lianhang","guanyu"] 5
2 ["najie","xiaoqiao"] 2
3 ["余辉","涛哥","星哥","念行","冠宇"] 5
4 ["娜姐","小乔"] 2
Time taken: 0.119 seconds, Fetched: 4 row(s)
hive> select name , data_array[0] ,size(data_array) from hive_array;
OK
1 xiaohui 5
2 najie 2
3 余辉 5
4 娜姐 2
Time taken: 0.169 seconds, Fetched: 4 row(s)
hive> select name , array_contains(data_array,"xiaohui") ,size(data_array) from hive_array;
OK
1 true 5
2 false 2
3 false 5
4 false 2
Time taken: 0.16 seconds, Fetched: 4 row(s)
hive>
3.4.3 struct类型创建和查询
## 建表语句
create table hive_struct(id int , userinfo struct<name:string,age:int,sex:string,major:string>)
row format delimited fields terminated by ' '
collection items terminated by ':';
## 原始数据
1 xiaohui:18:M:teacher
2 lisi:30:W:student
## 加载数据
load data local inpath '/root/data/hive-struct.txt' overwrite into table hive_struct;
## 数据查询
select id, userinfo.name,userinfo.age,userinfo.sex,userinfo.major from hive_struct;
结果展示
hive> create table hive_struct(id int , userinfo struct<name:string,age:int,sex:string,major:string>)
> row format delimited fields terminated by ' '
> collection items terminated by ':';
OK
Time taken: 0.064 seconds
hive> load data local inpath '/root/data/hive-struct.txt' overwrite into table hive_struct;
Loading data to table default.hive_struct
OK
Time taken: 0.583 seconds
hive> select id, userinfo.name,userinfo.age,userinfo.sex,userinfo.major from hive_struct;
OK
1 xiaohui 18 M teacher
2 lisi 30 W student
Time taken: 0.172 seconds, Fetched: 2 row(s)
hive> select id,userinfo from hive_struct;
OK
1 {"name":"xiaohui","age":18,"sex":"M","major":"teacher"}
2 {"name":"lisi","age":30,"sex":"W","major":"student"}
Time taken: 0.144 seconds, Fetched: 2 row(s)
3.4.4 explode在map和array使用
explode就是将hive一行中复杂的array或者map结构拆分成多行。
0: jdbc:hive2://hadoop11:10000> select explode(data_map) from hive_map;
+----------+-------------+
| key | value |
+----------+-------------+
| father | zsfa |
| moter | zsmo |
| brother | zsbr |
| father | lsfa |
| moter | lsmo |
| brother | lsbr-lsbr2 |
+----------+-------------+
0: jdbc:hive2://hadoop11:10000> select explode(data_array) from hive_array;
+-----------+
| col |
+-----------+
| xiaohui |
| taoge |
| xingge |
| lianhang |
| guanyu |
| najie |
| xiaoqiao |
| 余辉 |
| 涛哥 |
| 星哥 |
| 念行 |
| 冠宇 |
| 娜姐 |
| 小乔 |
+-----------+
0: jdbc:hive2://hadoop11:10000> select
. . . . . . . . . . . . . . . > row_number() over() as num , a.col as name
. . . . . . . . . . . . . . . > from (
. . . . . . . . . . . . . . . > select explode(data_array) from hive_array
. . . . . . . . . . . . . . . > ) a;
+------+-----------+
| num | name |
+------+-----------+
| 1 | 小乔 |
| 2 | 娜姐 |
| 3 | 冠宇 |
| 4 | 念行 |
| 5 | 星哥 |
| 6 | 涛哥 |
| 7 | 余辉 |
| 8 | xiaoqiao |
| 9 | najie |
| 10 | guanyu |
| 11 | lianhang |
| 12 | xingge |
| 13 | taoge |
| 14 | xiaohui |
+------+-----------+
3.4.5 Lateral View在map和array使用
横向视图与用户定义的表生成函数(如 explode())结合使用。 如内置表生成函数中所述,UDTF 为每个输入行生成零个或多个输出行。 横向视图首先将 UDTF 应用于基表的每一行,然后将结果输出行连接到输入行,以形成具有所提供的表别名的虚拟表。
在 Hive 0.6.0 之前,横向视图不支持谓词下推优化。 在 Hive 0.5.0 及更早版本中,如果您使用 WHERE 子句,则查询可能尚未编译。 解决方法是添加 set hive.optimize.ppd = false; 在你的查询之前。 修复是在 Hive 0.6.0 中完成的; 请参阅 https://issues.apache.org/jira/browse/HIVE-1056:谓词下推不适用于 UDTF。
从 Hive 0.12.0 开始,可以省略列别名。 在这种情况下,别名是从 UTDF 返回的 StructObjectInspector 的字段名继承的。
# Lateral View在map使用
0: jdbc:hive2://hadoop11:10000> with test as (
. . . . . . . . . . . . . . . > select data_map from hive_map
. . . . . . . . . . . . . . . > )
. . . . . . . . . . . . . . . >
. . . . . . . . . . . . . . . > select
. . . . . . . . . . . . . . . > row_number() over() as num ,t1.key ,t1.value
. . . . . . . . . . . . . . . > from test LATERAL VIEW explode(data_map) t1 ;
+------+----------+-------------+
| num | t1.key | t1.value |
+------+----------+-------------+
| 1 | brother | lsbr-lsbr2 |
| 2 | moter | lsmo |
| 3 | father | lsfa |
| 4 | brother | zsbr |
| 5 | moter | zsmo |
| 6 | father | zsfa |
+------+----------+-------------+
# Lateral View在array使用
0: jdbc:hive2://hadoop11:10000> with test as (
. . . . . . . . . . . . . . . > select data_array as b from hive_array
. . . . . . . . . . . . . . . > )
. . . . . . . . . . . . . . . >
. . . . . . . . . . . . . . . > select
. . . . . . . . . . . . . . . > row_number() over() as num ,name
. . . . . . . . . . . . . . . > from test LATERAL VIEW explode(b) t1 AS name;
+------+-----------+
| num | name |
+------+-----------+
| 1 | 小乔 |
| 2 | 娜姐 |
| 3 | 冠宇 |
| 4 | 念行 |
| 5 | 星哥 |
| 6 | 涛哥 |
| 7 | 余辉 |
| 8 | xiaoqiao |
| 9 | najie |
| 10 | guanyu |
| 11 | lianhang |
| 12 | xingge |
| 13 | taoge |
| 14 | xiaohui |
+------+-----------+