自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

北京小辉

学习是一种享受,也是一种痛苦,更是一种回忆!!!

  • 博客(5)
  • 资源 (14)
  • 论坛 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 CDH--HDFS和Yarn存储不足

备注:最近公司CDH集群中的某个DataNode存储一直报警,分析如下:1)一个集群有多个DataNode2)一个DataNode的数据会存储在多个路径。eg: /data1,/data2,/data3等等3)/data3 路径下面除了【/data3/dfs/dn】和 【/data3/yarn/nm】路径还会有其余文件,导致路径文件过大,同时CDH的 balancer 的平衡机制无法平衡4)解决方法:清除路径多余文件,或者在CDH中的DataNode移除对应路径5)无论DataNode还是y

2020-08-18 16:06:58 159

原创 JVM虚拟机

1.垃圾回收算法分类算法一:引用计数法。       这个方法是最经典点的一种方法。具体是对于对象设置一个引用计数器,每增加一个变 量对它的引用,引用计数器就会加 1,没减少一个变量的引用,引用计数器就会减 1,只有当对象的引用计数器变成 0 时,该对象才会被回收。可见这个算法很简单,但是简单往往会存在很多问题,这里我列举最明显的两个问题。       一是采用这种方法后,每次在增加变量引用和减少引用时都要进行加法或减法操

2020-08-07 19:35:01 170

原创 大数据工程师的日常工作内容

1 写 SQL(很多入职一两年的大数据工程师主要的工作就是写 SQL )2 为集群搭大数据环境(一般公司招大数据工程师环境都已经搭好了,公司内部会有现成的大数据平台,但我这边会私下搞一套测试环境,毕竟公司内部的大数据系统权限限制很多,严重影响开发效率)3 维护大数据平台(这个应该是每个大数据工程师都做过的工作,或多或少会承担“运维”的工作)4 数据迁移(有部分公司需要把数据从传统的数据库 Oracle、MySQL 等数据迁移到大数据集群中,这个是比较繁琐的工作,吃力不讨好)5 应用迁移(有

2020-08-07 14:17:57 334

转载 大数据优化方案----Spark数据倾斜

1. 什么是数据倾斜       数据倾斜是一种很常见的问题(依据二八定律),简单来说,比方WordCount中某个Key对应的数据量非常大的话,就会产生数据倾斜,导致两个后果:1)OOM(单或少数的节点);2)拖慢整个Job执行时间(其他已经完成的节点都在等这个还在做的节点)。2. 解决数据倾斜需要1)搞定 Shuffle;2)搞定业务场景;3)搞定 CPU core 的使用情况;(这里的core是虚拟的core而不是机器的物理CPU核,可以理解为就是

2020-08-07 11:27:45 163

原创 大数据面试题(五)----HIVE的调优及数据倾斜

一、 hive表的优化1)小表、大表 Join       将 key 相对分散,并且数据量小的表放在 join 的左边,这样可以有效减少内存溢出错误发生的几率;再进一步,可以使用 Group 让小的维度表(1000 条以下的记录条数)先进内存。在 map 端完成 reduce。实际测试发现:新版的 hive 已经对小表 JOIN 大表和大表 JOIN 小表进行了优化。小表放在左边和右边已经没有明显区别。案例实操      &n

2020-08-07 10:32:16 247

Mysql教程所有数据.zip

博客【北京小辉】中Mysql教程的所有加载数据。余辉,中科院硕士研究生毕业,专注于大数据领域多年。曾工作于清华大学、京东,现从事大数据讲师一职。 博客地址:https://blog.csdn.net/silentwolfyh

2020-05-05

silentwolf

让你在最短时间学会ASP.NET 通俗易懂

2010-05-19

新概念2知识点.pdf

新概念2-课文名称和知识点,链接:https://blog.csdn.net/silentwolfyh/article/details/95083297

2019-09-06

crawlerBank.py

功能说明: 2、选择爬取 代码说明: 1、如果没有参数,则抓取所有银行数据 1.1、抓取过程中如果有一家银行有错误,会邮件报警,且不影响其余银行抓取 2、如果有参数(参数只能有一个)且参数正确,则抓取对应银行数据 3、如果有参数(参数只能有一个)且参数操作,则停止运行,弹出正确参数列表 4、15家银行的银行名称、 银行代码 、 银行URL如下所示: 备注: 001 属于页面数据源在内嵌Iframe 002 属于页面数据源为json 008 属于页面数据源为js 010 属于页面数据源为xml

2019-07-08

Hive的Udf函数进行数据脱敏

udf开发–做个简单脱敏udf保留前5位,后面全部替换成*****

2019-01-26

sqoop的数据导入

sqoop的数据导入

2019-01-16

SpringBoot的mvc三层以及增删改查页面

demo说明 1、这个demo是一个springboot的样例。 2、MVC三层都弄好了,增删改查功能都能用。 3、Test中有Service层的测试方法 参考地址:https://blog.csdn.net/silentwolfyh/article/details/84350966 参考地址:https://blog.csdn.net/silentwolfyh/article/details/83995563

2018-11-22

spring boot+mybatis整合

目录 一、整体结构图 二、Spring boot搭建 三、整合Mybatis(自动生成工具) 1、集成druid,使用连接池 2、自动生成工具依赖和插件 3、最终的pom.xml文件: 4、在application.yml中添加数据源、Mybatis的实体和配置文件位置。 5、自动生成代码配置文件。 6、建立数据库和表 7、生产Dao层和entity类 8、建立controller层类 9、建立service层类 10、启动之后结果展示 --------------------- 作者:silentwolfyh 来源:CSDN 原文:https://blog.csdn.net/silentwolfyh/article/details/83995563 版权声明:本文为博主原创文章,转载请附上博文链接!

2018-11-12

传智播客---lucene入门

目录介绍 1、 Lucene介绍 a) 什么是lucene b) 全文检索的应用场景 c) 全文检索定义 2、 Luence实现全文检索的流程(重点) 3、 入门程序 4、 Field域(重点) 5、 索引维护 a) 添加索引 b) 删除索引 c) 修改索引 6、 搜索(重点) a) 通过Query子类创建查询对象 b) 通过QueryParser创建查询对象 7、 相关度排序 8、 中文分词器(重点)

2018-08-28

Lucene实战(第2版).pdf

《lucene实战(第2版)》基于apache的lucene3.0,从lucene核心、lucene应用、案例分析3个方面详细系统地介绍了lucene,包括认识lucene、建立索引、为应用程序添加搜索功能、高级搜索技术、扩展搜索、使用tika提取文本、lucene的高级扩展、使用其他编程语言访问lucene、lucene管理和性能调优等内容,最后还提供了三大经典成功案例,为读者展示了一个奇妙的搜索世界。   《lucene实战(第2版)》适合于已具有一定java编程基本的读者,以及希望能够把强大的搜索功能添加到自己的应用程序中的开发人员。lucene实战(第2版)》对于从事搜索引擎工作的工程技术人员,以及在java平台上进行各类软件开发的人员和编程爱好者,也具有很好的学习参考价值。

2018-08-28

SparkSql技术

目录 一:为什么sparkSQL? 3 1.1:sparkSQL的发展历程 3 1.1.1:hive and shark 3 1.1.2:Shark和sparkSQL 4 1.2:sparkSQL的性能 5 1.2.1:内存列存储(In-Memory Columnar Storage) 6 1.2.2:字节码生成技术(bytecode generation,即CG) 6 1.2.3:scala代码优化 7 二:sparkSQL运行架构 8 2.1:Tree和Rule 9 2.1.1:Tree 10 2.1.2:Rule 10 2.2:sqlContext的运行过程 12 2.3:hiveContext的运行过程 14 2.4:catalyst优化器 16 三:sparkSQL组件之解析 17 3.1:LogicalPlan 18 3.2:SqlParser 20 3.1.1:解析过程 20 3.1.2:SqlParser 22 3.1.3:SqlLexical 25 3.1.4:query 26 3.3:Analyzer 26 3.4:Optimizer 28 3.5:SpankPlan 30 四:深入了解sparkSQL运行计划 30 4.1:hive/console安装 30 4.1.1:安装hive/cosole 30 4.1.2:hive/console原理 31 4.2:常用操作 32 4.2.1 查看查询的schema 32 4.2.2 查看查询的整个运行计划 33 4.2.3 查看查询的Unresolved LogicalPlan 33 4.2.4 查看查询的analyzed LogicalPlan 33 4.2.5 查看优化后的LogicalPlan 33 4.2.6 查看物理计划 33 4.2.7 查看RDD的转换过程 33 4.2.8 更多的操作 34 4.3:不同数据源的运行计划 34 4.3.1 json文件 34 4.3.2 parquet文件 35 4.3.3 hive数据 36 4.4:不同查询的运行计划 36 4.4.1 聚合查询 36 4.4.2 join操作 37 4.4.3 Distinct操作 37 4.5:查询的优化 38 4.5.1 CombineFilters 38 4.5.2 PushPredicateThroughProject 39 4.5.3 ConstantFolding 39 4.5.4 自定义优化 39 五:测试环境之搭建 40 5.1:虚拟集群的搭建(hadoop1、hadoop2、hadoop3) 41 5.1.1:hadoop2.2.0集群搭建 41 5.1.2:MySQL的安装 41 5.1.3:hive的安装 41 5.1.4:Spark1.1.0 Standalone集群搭建 42 5.2:客户端的搭建 42 5.3:文件数据准备工作 42 5.4:hive数据准备工作 43 六:sparkSQL之基础应用 43 6.1:sqlContext基础应用 44 6.1.1:RDD 44 6.1.2:parquet文件 46 6.1.3:json文件 46 6.2:hiveContext基础应用 47 6.3:混合使用 49 6.4:缓存之使用 50 6.5:DSL之使用 51 6.6:Tips 51 七:ThriftServer和CLI 51 7.1:令人惊讶的CLI 51 7.1.1 CLI配置 52 7.1.2 CLI命令参数 52 7.1.3 CLI使用 53 7.2:ThriftServer 53 7.2.1 ThriftServer配置 53 7.2.2 ThriftServer命令参数 54 7.2.3 ThriftServer使用 54 7.3:小结 56 八:sparkSQL之综合应用 57 8.1:店铺分类 57 8.2:PageRank 59 8.3:小结 61 九:sparkSQL之调优 61 9.1:并行性 62 9.2: 高效的数据格式 62 9.3:内存的使用 63 9.4:合适的Task 64 9.5:其他的一些建议 64 十:总结 64

2018-08-16

MacBook Pro的快捷键

目录: 一、开机相关命令快捷键 , 二、常用系统快捷键 , 三、窗口操作 , 四、Finder , 五、屏幕截图

2018-08-16

hadoop-Apache2.7.3+Spark2.0集群搭建

包括了:Hadoop2.7.3、Spark2.0、Zookeeper3.4.8、Hive、Hbase、Kafka2.10、Flume的环境搭建

2018-08-16

SqlServer驱动包

SqlServer驱动包,代码请关注http://blog.csdn.net/silentwolfyh

2015-08-30

silentwolfyh的留言板

发表于 2020-01-02 最后回复 2020-01-02

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除